JPL D-7669, Part 2

Planetary Data System
Standards Reference

Version 1.18.0

PDS

Planetary Data System

Hatianal Asronautics and Space Adminstration

March 31, 2022

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California

PDS Standards Reference 1.18.0 2022-03-31

Contents

COMLEIIES ..ttt ettt ettt e s bt et e bt et e bt e e et e e bt e et e esbt e sab e e beeeaneenbeesareenaneeane 2
I INEEOAUCTION ...ttt et e b e et e b e et e bt e st e e s be e et e e bt e sabeenbeeenne 7
LT PUIPOSE. ..ottt ettt ettt e ettt e ettt e e bt e e st eesabteesabeeesabeesabeesnbeesbaeesnnneas 7
|11 o T PRSPPI 7
L3 AUAIEIICE ..ottt et ettt et e sttt e sa e e 7
1.4 Document OTZaniZatiONceeuueeiuieriieriieniieeieeete et et beeste et e et e sbeesabe e bt e sabeesbeesabeesaeeenne 8
1.5 EXternal Standardsc...cooeeeieiionieieeceeeec et 8
1.6 Document Availabilityc..ccoeoiiiiiiiiiiiiieiceecr et 9

2 ATCHhIVE OTZANIZAIONutiiiiiieiiiieeiteeeitee et e et e ettt e et e e sbteesabteesabeeesaseeessseesssbeeenaseesnnseesnnseesns 10
2A Archive Logical OrganiZation..........cooueeeiuieieiiieeniieeeieeeeiieeeite ettt et e st e st e s e snaeeeas 10
2A.T BUNAIES. ...ttt st ettt ens 10
2A.2 COIIBCHIONS ...eeeiiiteeiee ettt ettt et e st e e sttt e e bt e s bt e sbteesnteesabaeesanee 10
A3 PTOAUCES.....eiieeiteite ettt ettt ettt et sttt s et e be e s ate e bt e e bt e nseenaneens 11
2A.4 Primary and Secondary MEMDETScc..eeiiiiiiiiiiniiiiiiieeeiiceeeeee et 11
2A.5 COlIECHON TYPLS .eeeenerieeiiieeiiieeiteeriee et e ettt e st e e e bteesatteesabteesbeeesabeessabeesnaseesaseesnsseesanes 11
2B Archive Physical Organization..............coorieiiiieeriiiieiiieeeiieeeite ettt s sie e snae e 13
2B.1 PDS Data Storage and ACCESS.......covueieriieeriiieeiieeeiieesiteesieeesieeesneeesnseesnnseesnaseessseesanns 13
2B.1.1 Objects and FIIESc...cooiiiiiiiiiieeecceee e e 13
2B.2 Data TranSTer....c...eeiuiiiiiiiieeeee ettt sttt et e 13
2B.2.1 Transfer MEdIacoiiiiiiiiiiiiieeeeeeee ettt s 13
2B.2.2 DITECLOTY SIIUCLUTE ...ccueviieiiieeiiieeiieeeiteeeiteeeiteesteeesbeeesiseeessseeesaseeessseesnsseesnnseessseas 13
BILADCLS ettt ettt ettt h e e a bt e e bt e e ehb e e s eat e sbeeesnaeeea 18
4 Fundamental Data StrUCTUTEScevuiiiiiiriieiienieeiteee ettt ettt st 20
AA U ATTAY ettt ettt et e bt e bt e et e e bt e et e e e a b e e e bt esateesnaeeea 20
4A.1 Storage Order and Index Order - Definitions...........ccceevvieeiiieeiiieeniieeniie e 20
4A.2 Storage and Index Order - Conventions in Popular Software Environments 21
4A.3 Array Storage EICIMENLScccueiiiuiiiiiiieeiie et ertee et e et e tee et e e s e e sebeeesaseeenaee e 21
AA .4 AXIS MEANING ...ccuvvieiiieeiiieeiteeeiteeetteeetteeeteeesiteeestteeessteeesseeansseesssseessseesanseeesnseesnsseesnns 22
4A.S5 DiSplay OTIENTALIONcuveeurieeiiieiieiteeiteet ettt ettt et ereeseeesreesbeesneeseneeaneens 22
AB TabIE BASEutiiiiiiiiiiiie ettt sttt ettt aees 23
ABLT FIELAS -ttt ettt et s e e b e st e e bt e s ate et esabe e beesateebeennteeareens 23

PDS Standards Reference 1.18.0 2022-03-31 2

AB.1.1 Field Length c..cc.ooiiiiiiiiiiiieeeectee et 23

AB.1.2 Field FOMALS.cceiriiiiiiieiieiiceieceeett ettt sttt 24
AB.2 GTOUPS ..eeeuvveeeitreeeieeenteeessteeesteeesreesteeesseeessseeassseeessseeasssasassaeassssessssesassessnssessnsseesnsseennns 26
4C Parsable Byte SIEAMcccuuiiiiiiiiiiiieiiieeeite ettt ettt et ettt e e st e s sabeessaneesnabeeeas 26
4C.1 Delimiter Separated Value Format DesCriptioncccveevvieerieeeiiieeniieeeiee e eevee e 27
A4C.2 Delimited Tablesccocueeiiiriiiiiiieeeee ettt 28
4D Encoded Byte SIrEaM......coc.uiiiiiiiiiiiiiiiieeeiteete ettt ettt et 29
S DALA TYPES ettt ettt e et s e e st e e b et et e e abe e e abeeseabeesnteesnaeeeas 30
SA AUITDULE ValUC TYPOS ..vvieiiiieiiieeiiiieesieeesttte et e ettt eeteeesteeesbeeessbeeessseeessseeessseeensseesnsseesnsseeens 30
SA.T BOOICAN TYPES...uuiiiiiiiiiiiieeiee ettt ettt ettt stt e e st e e st e e s ibeessabeeenaseeenareeenseeeanee 30
SA.2 Date and TImMe TYPES ..ccuveeeuiiiiiiiieiiee ettt ettt ettt st e s e e 30
SA.Z INUMETIC TYPES c.uutieiiiieiitie ettt ettt ettt e e e st e e et e e s beeesabeessabeesaseesnaseessseesanee 33
SAA SIING TYPES -ttt ettt ettt e et s bt e st e st e s b e 35
SB Character Data TYPESceeeeieiriieiiiieeiiee ettt ettt ettt et et e e s bee et essabeessabeessaseesnaeeeeas 38
SC BINAry Datd TYPES....cueeeiiiiiiiieeiieeti ettt sttt e 39
SCLT INEEEETS .ttt ettt ettt et e ettt e ettt e ettt esaba e e s bt eessbbeesabeeessbeeesabeeennbeesnseesnnseesnsseesanes 39
SC.1.1 Signed LSB INTEEETS.......coiiiiiiiiiiiieieeeee e s 39
SC.1.2 Unsigned LSB INEZETS ...c.uveieiiiieiiieeiiieeiieeeite ettt et st e s e s 41
SC.1.3 Signed MSB INTEEETSeovuiiiiiiiiiiiieieeeeeeee e e 43
SC.1.4 Unsigned MSB INEEZEIScoeruiiieiiieeiiieeiiee ettt ettt ettt e s 45
SCL2 REALS ..ttt ettt ettt e ettt et e st e sbe e 47

T O I 0003111 o) 1) OSSPSR 50
SCd BIE SITINES ...ttt ettt sttt s et sne e e st e seesaneeneeeaneenneenaneens 52
5C.4.1 Unsigned Integers Stored as Bit Strings.........cccevvveeriiieeniiieiniieeriie e 52
5C.4.2 Signed Integers Stored as Bit SIrNESc.coovieiiiiriiiiiiiiiecceeeeceeeee e 53

O INNAIMING......ceeiiiieeeiie ettt et e ettt e et e e ettt e e tteeestaeesataeesasaeessseeensseeenssaeessseesnsseeenaseessseesnseesns 54
A CRATACTET SELS ...eeiueiiiiiiieiiiee ettt ettt ettt e sttt e st e e sab et e sabeeseateessabeesabseesbeeesbeeeeas 54
6A.1 ASCII Character Set (also known as ISBasicLatin)cccccoeevvvuvveeeiieiiiiiniiiieeeeeeeeeeenns 54
6A.2 ASCII Alphanumeric CharaCter Set..........coceevieriieiieriiienienieeeeeee e 56
6A.3 ASCII Printable Character Stcocueiiiiiiiiiiiniieieeieeeeeeete et 57
OALA UTF-8....eeeee ettt ettt e b e et e et e et e e bt e sabe e steeabeenstesabeesseesnseans 57
OB INAIMESPACE ...eeevieeiiieeiiie et etee et e et e et e ettt eetteeetaeesstaeessseeessseeesnseeessseesasseeennseessseesnnseenns 57
6B.1 Namespace Creation and USE...........oocueeviiriiiiiiniiiieeieeeceieeieeee e 57

PDS Standards Reference 1.18.0 2022-03-31 3

6B.3 Formation of Namespace URIS:ccooiiiiiiiiiiiiiiiiieieceeee e 58
6C File and Directory NamiNE.........ccceecveriiriiiiinieiiiieneeit ettt 59
OC.1 FIle INAINES. ..ccueeiiiieiieeieeeete ettt sttt et st e bt e st e nbeenaneens 60
OC . 1. T RUIES ...ttt et ettt e st sabeenaee e 60
6C.1.2 Prohibited File NamMEScocuiiiiiiiiiiiiiceiceectccecceeeee e 60
6C.1.3 Reserved File NamMES.......ccc.oiiuiiiiiiiiieeeeee e s 60
6C.1.4 Prohibited Base NAmMESccccocuiiiiiiriiiiiiiieiciceecceeee et 61
6C.1.5 Reserved Base Name COMPONENLSccccuveeerureeeiuieeniieeniieesieeesreeessreesssreesssseesnsnens 61
6C.1.6 Reserved File Name EXteNSIONS.cccueevuiiriieiiiiniiiiiciiceiececeeenee e 61
OC.2 DIATECIOTIES ..ueveeeuiiieeiiee ettt ettt ettt e ettt e ettt e et eesabteeeabe e e e abeeeeabeeeebbeesbbeesneeesabaeesanee 63
OC.2.T RUIES ...ttt ettt sttt e sne e e e 63
6C.2.2 Reserved DIrectory INAMES.coovuiiiiiiiiiiiieeiiececeteete ettt 63
6C.2.3 Prohibited Directory INAMESccueeeruiiiriiieeiieeeiieeeiieeeite ettt e s 63
6C.2.4 Directory Path INAmMEScoooiiiiiiiiiiieee e 64

OD TAENTITIETS ..ttt ettt st sbe e et e st st e bt e saneenbeenaneens 64
6D.1 LoCal TAENUTIETceiiiiiiiiiieiiee ettt st 64
6D.2 LoICAl TACNUTICTeiieiiiieiie ettt et e e e s eenbee e 64
6.3 VEISIONINE ...ccuueiiuiiiiieiiieiee ettt ettt ettt sttt e st et e sane e esaneeneesaneeneesaneenseesaneens 65
6D.3.1 Bundle, Collection, and Product Versioningccccceeeeuveerieernieeenieennieeenieesnnen 65
6D.3.2 System, Namespace, Data Dictionary, and Document Versioning.............ccccceeue.... 66

6E Classes, Attributes, and AtIIDULE VaAlUEScooiiviveieeee ettt e e e eveeeeeeeeeeeeeneaes 67
OE. T CLASSES ..ttt ettt et e ettt e et e e et e e et e e eabe e s bt e e bt e e s neeesabeeenanee 67
OE.2 ALITTDULESeeneeeeiteeee ettt ettt e e et e bt s ate e bt e e bt e nbeenaneens 67
OE.3 AIIDULE VAIUES. ...ccoiiiiiiiiiiiiie ettt ettt st e s e e 68
6E.3.1 Enumerated Attribute ValUesc.cooviiiiiiiiiiiiiniiiicceeeceeee e 68
6E.3.2 Attribute Value UNIScccueiiiiiiiiiiiiiiiieeiteeeteeee ettt s 68
6E.3.3 Attribute Value LAMILS.....cccueiiiiiiiiiiiiiiieieeeieeiceteeteree ettt 68

T UTILES .ttt et et ettt ettt e sttt ettt e a bt e e a bt e e bt e e e bt e e e bt e e ettt e e a bt e e eabeeeeabeeenbeeeanbeeea 70
TA Types Of MEASUTCIMENL..........ceeruiiieiiiieeiiieeeitieeeitteestteesteeestteeeeseeeseeessreessseeessseeesseesssseesssseesns 70
TB SPECIIC UTILS ..ttt ettt e st sae e saneesneesaneeeees 71
T PLEIIXES ettt ettt ettt ettt et a e et et e bt e a e bt e st e e nat e e bt e aees 71
TD DEIIVEA UNILS ..iiiiiieiiiteeiteeeit ettt ettt e ettt e ettt e sttt e s abe e e sabt e e sabeeesabeesaeeesnaeeeas 71

PDS Standards Reference 1.18.0 2022-03-31 4

TE EXPTESSIONS ...eeeiutieeeiiieeeiieeeiteeestteeestteeeteeesaeeesseeessseeeasseeaasseeansseeassseeessseesssseessseesssseesnsseesnsseeans 72

I 1021115 1 L TSP P O PP TP RPPIOPRRRPPTPRO 73
8A Documentation REQUITEMENEScccviiiiiiireiiieeiieeerieeesieeeteeeiteeeaeeeebeeessreeessaeessnseeesseeennns 73
BAL T LADEIS ..ot st 73
8A.2 Internal DOCUMENTALION.coiuiiiiiiiiiiiceiie ettt s 73
8A.2.1 Document COIECTIONS........ccouiiiiiriiieiieriie ettt s 74
8A.2.2 Document ProdUCESc.eeiiiiiiiiiiiiiieceeeeeete et 74
8A.3 External DOCUMENTALIONcooueiriiiniiieiieiienieeiee ettt s e 75
8B Context Bundle, Collections, and ProQUCES.......c.oooeeeueeeeeeeee et ae e 76
8B.1 Collections Under the PDS4 Context Bundle ..o 76
8B.2 PDS CONteXt PrOAUCEScoouiiiiiiiiiiie ettt 76
8B.3 Context Collections and Products in Science Bundles............cccccevieriiiniiiiiinicnneennene 77
BC CaAlIDIALION ...ttt ettt ettt e et e et e e eab e e eate e st e s ebe e e sbeeenanee 77
Y D € 11071115 8) OO RRROTSR 77
O Special CONSITAINTS.c.ueiiiiiiiiiieeiieet ettt ettt st et esaeeeneesaneeneens 78
OA HEAAET CLASS ..ttt ettt ettt et st e bttt e bt e st e bt e eaneenbeesaneens 78
OB Group Fields and GIOUPSc.ccoiiiiiiiiiiiiieiece ettt 78
OC PrOAUCE_COlIEOIIOMN ..t eeeeeeeeeeeeee ettt e e e e e ettt eeeeeeeeeeteeaa e sesesetesasaneseseseresasaneassseeenenes 78
9C.1 Creating an Inventory Table.........cccoooiiiiiiiiiiiie e 78
9C.2 Generating and Populating a Product_Collection Labelcccccocuveiviiiiiniiriniiiriieenne, 79
9C.3 Constraints 0N COIECHIONScc.utiiiiiiiiiiiieiieeeie ettt 80
9C.3.1 Mission Science Data Collection - CONStIaINtS.......ccceeruveerieerieriieenieeieeneenieenieenne 80

OD Product BUNALE.......ouueeiiiiiiieeeeee ettt e e e e e ettt e e e e e e eetabaneeseeeenenns 80
9D.1 Creating a Product_Bundleccooeiiiiiiiiiiiieeeeee e s 80
9D.2 Generating and Populating a Product_Bundle Label...............ccccoociiiiniiniiiiins 80
9D.3 Constraints on BUNAIESccoouiiiiiiiiiiiiitcctee ettt 81
9D.3.1 Mission Science Archive Bundle - Constraintscccoceeeveeeinieennieennieenneeennnen. 81

OF PrOQUCE INALIVE ..ceeeeiieeee ettt e e et e e e e e e et e e eseeeeereaanaaaseseeerenasanaaneseeenenes 81
OF CIaSS SEIECTION ...ccuutiiiiiiiiitie ettt ettt ettt e st e e et e et e e bt e seabeesbbeesbeeesbeeeeas 82
9G Product_Metadata_Supplementalcc.eeeriieeiiiiiiiieeieeeire et 83
OH COMPOSILE SIIUCTUTE......c.uviiiieriieeiieeite et et etee ettt sttt sre e b sreesbeeeeneesseesaneenneeeaneessnesnneens 84
10 GENETAl POLICIES ...cuveiniiiiiiieiieetie ettt ettt ettt e ens 84
CRANEE LLOZ ..ottt ettt ettt et st e eees 85

PDS Standards Reference 1.18.0 2022-03-31 5

VETSION 1.0.0 1o e e e et e aaaeeeeereaanaaaeeaaenaae 85

VEISION 1.2.0 ettt ettt ettt st sat e et e e saneens 85
VEISTON 1.3.0 ittt ettt b e s ht e et e s et e e beesbtesabeenaeesabeens 90
VEISION 1.4.0 ..ottt ettt et st esbt e et e e eaneens 90
VEISTON 1.7.00 ittt ettt e b e s ht e et e s it e e beesbteeabeesaeesabeens 93
VEISION 1.8.0 ...ttt ettt ettt et st be e st e b eaneens 97
VErSION 1.9.0 ..ottt et ettt sat e et e st e e beesbteebeesbeeeabeens 97
VErsion 1.10.0 . ccuiiiiieee ettt ettt et sttt ens 98
VErsiON L.10.T ..ottt ettt e st et eesbbeebeesbeeeabeens 98
VEISION L.1T.0 ettt ettt et st esbt e s et e neeesaneens 98
VEISION 112,00 ittt e bt e st e st e et e et esbeee s 99
VEISION 1.13.0 ettt ettt et st e sbt e e bt e nbeenaneens 99
VEISION 1140 ettt ettt et e s bt e st esbeeesaeees 100
VEISION 1.15.0 ettt et st ettt e st e 100
VEISION 1.16.0 ..ttt ettt sttt e s e e s aeees 100
VEISION 1.17.0 ettt et st ettt e sbe e sateesaee e 101
VEISION 1. 18.00 . ittt ettt st et e st e sbeeesnaees 101

PDS Standards Reference 1.18.0 2022-03-31 6

1 Introduction

Version 4 of the Planetary Data System (PDS) is now available. Data from new missions are
being designed for ingestion into PDS4’ and earlier PDS3 data sets are being migrated to the new
PDS4 system!.

The PDS4 Information Model (IM) is the fundamental reference for PDS4 structure; its
requirements can be validated automatically using eXtensible Markup Language (XML)
schemas.

The PDS4 Data Dictionary Data Base (DDDB) is the fundamental reference for definitions of
classes and attributes.

The PDS4 Concepts document provides an overview of the philosophy behind and organization
of PDS4. It includes a glossary of terms as used within PDS4.

1.1 Purpose

The PDS4 Standards Reference (SR) 1s a compilation of policies, rules, and other PDS4
constraints that are not given explicitly in the IM and DDDB. The combination of the IM,
DDDB, and SR gives the set of common requirements that apply across PDS. Each PDS
discipline node (DN) may establish additional requirements that further constrain — but do not
conflict with — the common requirements and apply only to data ingested through that node.

1.2 Scope

The PDS4 SR applies to PDS Version 4 and its holdings. External standards, adopted by PDS,
are included by reference. Examples and recommended best practices can be found in the PDS4
Data Provider’s Handbook (DPH) and references therein.

1.3 Audience

The PDS4 SR is intended primarily to serve the community of scientists and engineers
responsible for preparing planetary science data for submission to PDS4. Such submissions
include restored data from the era prior to PDS or from earlier versions of PDS, mission data
from active and future planetary missions, and data from Earth-based sites, including laboratories
and independent research efforts. The audience includes personnel at PDS discipline and data
nodes, principal investigators and their staffs, and ground data system engineers. The document
will be most useful to people who have experience with PDS archiving; those new to PDS may
find the PDS4 Concepts document to be a better place to start.

While instructions and examples in this document are given in the context of data prepared for
archiving in the NASA Planetary Data System, the PDS4 Standards are available for use by other

! PDS4 standards are not backwardly compatible with version 3 (PDS3). In principle, version 4 data can
be described using version 3 labels, but the converse is not true; some PDS3 structures are no longer
supported under PDS4.

PDS Standards Reference 1.18.0 2022-03-31 7

national and international space agencies, and indeed the PDS welcomes such usage. Other
agencies using the PDS4 Standards have complete governance over their own data repositories,
name spaces, and mission and discipline data dictionaries. Readers are encouraged to contact
their archiving authority for details.

1.4 Document Organization

The PDS4 SR is divided into parts. The first, Sections 1-7, contains detailed information on the
structural aspects of a PDS4 archive: the format of data, labels, and their assembly into
‘packages’ for submission and transfer. The second, Section 8, is more focused on the nature of
what is stored in PDS4 archives — such as adequacy of calibration and documentation. The
third, Section 9, documents additional constraints which do not fit easily into the previous two
sections. The fourth, Section 10, provides a link to PDS policy statements with which this and
other documents must comply.

1.5 External Standards

External standards, which apply to this document and to PDS4-compliant data, include the
following:

American National Standards Institute (ANSI)

e ANSI INCITS 4-1986 (R2007) Information Systems - Coded Character Sets - 7-Bit
American National Standard Code for Information Interchange (7-Bit ASCII)

Astrophysics Data System

e https://adsabs.github.io/help/actions/bibcode Information on the ADS BibCode Format

Consultative Committee for Space Data Systems (CCSDS)

e CCSDS 641.0-B-2 Parameter Value Language Specification (CCSD0006 and CCSD000S)
(also available as ISO 14961:2002)

Institute of Electrical and Electronics Engineers (IEEE)
e IEEE 754-2008 Standard for Binary Floating-Point Arithmetic

International Standards Organization (ISO)

e ISO 646:1991 ISO 7-bit coded character set for information interchange

e ISO 8601:2004 Data Element and Interchange Formats — Representations of Dates and
Times

e International Standards Organization/International Electrotechnical Commission (ISO/IEC)
10646:2012 Information technology — Universal Coded Character Set (UCS)

e ISO/IEC 11179-3:2003 Metadata registries (MDR) — Part 3: Registry metamodel and
basic attributes

e ISO/IEC 11404:2007 General-Purpose Datatypes (GPD)

e ISO/IEC 19757-3:2006 Information technology -- Document Schema Definition Languages
(DSDL) -- Part 3: Rule-based validation -- Schematron

e ISO 14721:2003 Open archival information system — Reference model

e International Standards Organization / Technical Standard (ISO/TS) 15000-3:2004
Electronic business eXtensible Markup Language (ebXML) — Part 3: Registry

PDS Standards Reference 1.18.0 2022-03-31 8

https://adsabs.github.io/help/actions/bibcode

information model specification (ebRIM)
e ISO/TS 15000-4:2004 ebXML — Part 4: Registry services specification (ebRS)

National Institute of Standards and Technology (NIST)

e NIST Special Publication 330 The International System of Units (SI), United States version
of the English text of the eighth edition (2006), Issued March 2008

World Wide Web Consortium (W3C)

e Extensible Markup Language (XML) 1.0 (Fifth Edition)
e W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures (W3C, 2012a)
e W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes (W3C, 2012b)

Requests for Comment

e RFC 1321, The MDS5 Message-Digest Algorithm (http://tools.ietf.org/html/rfc1321)
e Yergeau, F., UTF-8, A Transformation Format of ISO 10646, RFC 3629, Internet
Engineering Task Force, November 2003 (http://tools.ietf.org/html/rfc3629)

International DOI Federation

e http://www.doi.ore General information and “Resolve a DOI Name” interface

1.6 Document Availability
PDS4 documents governing archive preparation are available online at:

https://pds.nasa.gov/datastandards/documents/

For questions concerning these documents, contact any PDS data engineer or contact the PDS
Operator at pds_operator @jpl.nasa.gov or 818-393-7165.

Associated schemas for current and past versions of PDS4 can be found at

https://pds.nasa.gov/datastandards/schema/released/

PDS Standards Reference 1.18.0 2022-03-31 9

http://tools.ietf.org/html/rfc3639
http://www.doi.org/
https://pds.nasa.gov/datastandards/documents/
mailto:pds_operator@jpl.nasa.gov
https://pds.nasa.gov/datastandards/schema/released/

2 Archive Organization

2A Archive Logical Organization

2A.1 Bundles

A bundle is the default logical construct for archiving digital data in the PDS. (Recall that terms
such as bundle, collection, and basic product are defined in the glossary of the PDS4 Concepts
document.)

Bundles have a simple hierarchical structure. A bundle has one or more member collections,
each of which has one or more member basic products (Figure 2A-1). PDS does not impose
requirements on how bundles are defined except that (1) each bundle must have a unique
identifier within the overall holdings of PDS, and (2) each bundle must be approved by a PDS
peer review.

Bundle

/Basic Product (1..*)\

Figure 2A-1: Archive structure.

Members of a bundle are listed in a Product_Bundle, an XML file which serves as both a label
and the bundle inventory. Product_Bundle is described and uniquely identified using the
Product_Bundle class definition (see Section 9D for information on constructing
Product_Bundle).

An optional “readme” file may be included as part of a Product_Bundle; it is described by the
bundle label so is not a separate product. The “readme” file provides a general overview of the
bundle contents and organization in human readable format. It may also contain general
instructions for use of the bundle and contact information for the data provider or discipline node
personnel. The “readme” file must be formatted either as 7-bit ASCII text or as UTF-8 text.

2A.2 Collections

Basic products are organized into collections based on the type and function of the data. PDS
imposes only broad requirements on how these type and function boundaries are drawn (see
Section 2A.5). Collections must be distinct within a bundle, products must be distinct within
each collection, and each collection must be approved by a PDS peer review. Any single version
of a collection is defined and uniquely identified using the Product_Collection class definition —

PDS Standards Reference 1.18.0 2022-03-31 10

an XML label file paired with an inventory table, which lists collection members for that version
(see Section 9C for information on constructing Product_Collection).

Collection members must use either a “.xml” or “.1blx” extension for the XML label files; but not
a mix within a single Collection.

2A.3 Products

A basic product is the simplest product in PDS4 — one or more data objects and their
description objects, which constitute a single observation, document, etc. Typically, a data
object is a file containing a single image, table, or time series; description objects are typically
text that describes both the format and content of the associated data object. A label is an XML
file, which is the concatenation of one or more closely related description objects (such as for the
red, green, and blue components of a color image) with some XML overhead; the corresponding
basic product is that label plus the red, green, and blue image data objects. A document basic
product is constructed in the same way: the basic product is the set of files containing text,
figures, and tables together with a label comprising the description objects. Certain XML files
qualify as basic products by themselves — they are ‘XML documents’.

Digital objects which comprise observational data may be used in one and only one product.

Product_Collection and Product_Bundle are aggregate products; they define an aggregation of

basic products and an aggregation of collections, respectively. They are not basic products. All
products, whether basic or aggregate, must have globally unique logical identifiers (see Section

6D).

2A.4 Primary and Secondary Members

Basic products may be either primary or secondary members of their respective collections. A
primary member is one that is being registered with PDS for the first time. A secondary member
is one which is already registered with PDS, but which is now associated with an additional
collection®. A product’s member status (primary or secondary) is based on its first association
with a collection. Although the product may be omitted from a later version of the collection, it
retains its primary or secondary member status through all subsequent versions of the collection
based on its initial association. In a similar way, collections are categorized as having either
primary or secondary ‘member status’ in their bundles.

2A.5 Collection Types

Basic products must be organized into collections based on the type and function of the data.
Data providers are expected to assign products to appropriate collections (e.g., only ‘quick-look’

2 Data providers are not obligated to include physical copies of secondary member products or collections
when they deliver bundles to PDS, since the secondary members already exist elsewhere within PDS.
PDS, on the other hand, must deliver copies of these secondary members when bundles are distributed
(unless waived by the recipient).

PDS Standards Reference 1.18.0 2022-03-31 11

or ‘browse’ products are expected to be assigned to a browse collection); the assignments will be
considered during peer review. PDS recognizes the following types of collections.

A browse collection contains ‘quick-look’ products designed to facilitate use of the archive.
Products in a browse collection are defined using appropriate classes; possibilities include
Product_Browse and Product_Thumbnail.

A calibration collection contains data and files necessary for the calibration of basic products.
Products in a calibration collection are defined using the appropriate class; possibilities include
Product_Observational and Product_Document.

A context collection is the list of products comprising various objects, identified within the PDS4
registry, that are specific to the science bundle. These include physical objects such as
instruments, spacecraft, and planets and conceptual objects such as missions and PDS nodes. All
products in a context collection will be secondary members of the collection, since the primary
versions are curated by the PDS Engineering Node or other responsible agency.

A data collection contains observational products, often separated according to processing level,
target, instrument mode, etc.; these are the science data that most users seek. Products in a data
collection will typically be defined using the Product_Observational class.

A document collection includes all components (figures, tables, text, etc.) of one or more related
documents. The document collections included with a bundle are those deemed useful by the
data preparer and consulting node for understanding, interpreting, and using other collections in
the bundle. Documents may include software interface specifications (SISs), calibration reports,
and data acquisition summaries, among other topics. Products in a document collection will be
defined using the Product_Document class.

A geometry collection contains non-SPICE geometry products — for example, Supplementary
Experiment Data Record (SEDR) data, gazetteers, tables of anaglyph pairs, or footprint files.
Detailed information about particular cartographic projections utilized in the archive may also be
included. Products in a geometry collection are defined using an appropriate class; possibilities
include Product_Observational, Product_Ancillary, and Product_Document.

A miscellaneous collection contains supplementary information deemed by the data provider to
be useful in the interpretation and use of other collections in the bundle, but which does not fit
within the scope of the other collections. For example, meta-data catalogs, data base dumps, and
records of modification history could be included. Because of the disparate nature of the files
included in a miscellaneous collection, no single class exists for miscellaneous products. The
following are some of the possibilities: Product_Ancillary, Product_Document,
Product_File_Text, Product_Observational, Product_Thumbnail, and Product_Zipped.

An XML schema collection contains all XML schema files included in or referenced by XML
labels in the bundle along with any Schematron files created for validation purposes. A bundle is
required to contain an XML schema collection unless all of the collection members would be
secondary in which case the XML schema collection becomes optional. There can be no more
than one XML schema collection per bundle.?

3 The PDS4 schema and Schematron files are software-readable representations of the PDS4 Information
Model. They are discussed in section 3, Labels.

PDS Standards Reference 1.18.0 2022-03-31 12

A SPICE kernels collection contains individual SPICE files and their XML labels, organized by
kernel type. Products in a SPICE kernel collection must be defined using the
Product_SPICE_Kernel class.

2B Archive Physical Organization

2B.1 PDS Data Storage and Access

Except for file and directory naming rules in Section 6C and the restrictions on objects and files
in Section 2B.1.1 immediately below, no standards are set within this document for the
organization of the physical archive (i.e., there are no requirements for how the data are stored
within or accessed from a physical repository or data storage).

2B.1.1 Objects and Files

PDS requires that each digital object be physically distinct and contiguous in a single file;
objects may not overlap. For example, a color image may be stored as three separate
Array_2D_Image (RGB) objects with each of the R, G, and B components being stored
separately. The lines or samples of the three components may not be interleaved in this case.
However, it is permissible to define such an image as a single Array_3D_Image object with
interleaved lines or samples.

Although a single file may contain multiple digital objects, no digital object may extend beyond
a single file. For example, the R, G, and B image components above may each be stored in a
separate file, or they may all be stored together in a single file, but any one component may not
span two or more files.

A label and all of its associated digital objects must be stored in the same directory unless the
directory_path_name attribute is available, in which case directory_path_name may be used to
indicate a subdirectory relative to the directory containing the label.

2B.2 Data Transfer

The parties involved in a data transfer to, from, or within PDS are free to adopt any procedure
that is mutually acceptable. In lieu of such an ad hoc agreement, the following procedure is
suggested.

2B.2.1 Transfer Media

The parties involved in a data transfer must agree on the physical media and interfaces to be used
(CD, DVD, magnetic disk, electronic, etc.). PDS defers to industry standards for the media
selected.

2B.2.2 Directory Structure

The directory structure described in this section is given as an example of how data may be
packaged for transfer. PDS4 bundles and collections are not required to follow this structure.

Using this method, data may be transferred using a directory structure that parallels the logical
organization of the bundle (Section 2A). Note that the directory structure does not itself have to

PDS Standards Reference 1.18.0 2022-03-31 13

meet the requirements for logical bundles or collections. Many transfers will contain only a
portion of a bundle or collection.

The following sections describe such a directory structure, starting with the root directory.
In the tables and figures below, the following conventions have been adopted:

o Bold-faced font is used for directory names, while unbolded font is used for file names.
Where no pattern for directory or file name construction is specified, example names
are shown in italics.

o The asterisk “*” indicates that any text may be substituted. In Table 2B-1 browse[_*]
means that “browse” or any directory name starting with “browse_" is acceptable. See
Section 6C for restrictions on directory and file names.

o Square brackets “[] identify variable parts of file or directory names. For example,
readme[_*].txt in Table 2B-1 means that the file name beginning with “readme” may
be lengthened with any character string that begins with an underscore “ . Using an
underscore for readability is a common practice, but a hyphen or any other legal file
name character could be used.

2B.2.2.1 Root Directory
The root directory corresponds to the top level of a bundle. It contains a Product_Bundle and
subdirectories corresponding to its member collections.

Table 2B-1 — root Directory

File or Directory Name Notes

root may be unnamed
bundle[_*].xml | .Iblx See restrictions
readme|[_*].txt described by the bundle[_*] XML label
browse[_*]

calibration|_*]

context[_*]

data_*]

document[_*]

geometry[_*]

miscellaneous[_*]

xml_schema[_*]

spice_kernels[_*]

A bundle is described by an XML label with the name “bundle[*] and having an extension of
either “.xml” or “.Iblx”. One or more of these files may be included under the root of the transfer
directory structure, but none is required.

PDS Standards Reference 1.18.0 2022-03-31 14

The optional “readme” file provides a general overview of the bundle contents and organization
in human readable format. The file is an optional component of Product_Bundle and is described
in the bundle label.

2B.2.2.2 Subdirectories

Beneath the root directory in this example structure, the top-level subdirectories have a one-to-
one correspondence with the bundle’s collections. Each collection subdirectory has a collection
label with a name of the form “collection] *] and having an extension of either “.xml” or “.1blx”.
and a collection inventory table with a name of the form “collection| *].csv”. (Sometimes
“collection[*] inventory.csv” is used.) See Section 9C.1 for details on construction of
collection inventory tables.

Collection labels and inventory tables usually reside in the top-level subdirectories. If there are
many products in the collection they are usually divided into lower level subdirectories as shown
in Figure 2B-1. The lower level subdirectories are named and organized at the discretion of the
data provider except for SPICE kernel subdirectories, which have a required structure (see
Section 2B.2.2.3). An example directory structure may be found on the PDS4 Examples web
page at https://pds.nasa.gov/datastandards/documents/examples/.

In cases where a bundle contains multiple collections of the same type, the names of the
subdirectories containing these collections are distinguished by a suffix to the subdirectory name.
For example, if two calibration collections are present in the archive, the two calibration
subdirectories might be named calibration_flight and calibration_ground (Figure 2B-2).

- bundle.xml
- readme.txt

- browse
- collection_browse.xml
- collection_browse.csv

- flight
- flight_0001_1.0.jpg
- flight_0001_1.0.xml
- flight_0002_1.0.jpg
- flight_0002_1.0.xml

Figure 2B-1: Illustration of an example structure for one browse subdirectory (one collection) with many
basic products organized into subdirectories.

PDS Standards Reference 1.18.0 2022-03-31 15

https://pds.nasa.gov/datastandards/documents/examples/

root

- calibration_flight
- collection_calibration_flight.xml
- collection_calibration_flight.csv

- cruise
- flightcal_product01.jpg
- flightcal_product01.xml
- flightcal_product02.jpg
- flightcal_product02.xml

- orbit_0001-0100

- calibration_ground
- collection_calibration_ground.xml
- collection_calibration_ground.csv

- 2010 03
-2010_03_04_0001.jpg
-2010_03_04_0001.jpg
-2010_03_04_0001.jpg
-2010_03_04_0001.jpg

Figure 2B-2: Illustration of an example structure for two subdirectories containing two collections of the
same type (calibration). Lower level subdirectories (cruise, orbit_0001-0100, 2010_03, and possibly
others) are defined and named by the data provider.

2B.2.2.3 SPICE Kernels Subdirectories

Under a SPICE Kernels subdirectory, normally named “spice_kernels”, individual SPICE files
and their XML labels must be organized by kernel type and placed in the corresponding
subdirectories:

ck subdirectory with CK files (spacecraft and instrument orientation data)
dbk subdirectory with DBK files (data bases in SPICE format)

dsk subdirectory with DSK files (digital shape data for natural bodies)

ek subdirectory with EK files (events information)

PDS Standards Reference 1.18.0 2022-03-31 16

fk
ik
Isk
mk
pck
sclk
spk

subdirectory with FK files (reference frames definitions)

subdirectory with IK files (instrument parameters and FOV definitions)
subdirectory with LSK files (Ieapsecond information)

subdirectory with MK files (meta-kernels listing kernels to be used together)
subdirectory with PCK files (natural body rotation and size/shape constants)
subdirectory with SCLK files (spacecraft clock correlation data)

subdirectory with SPK files (trajectory and ephemeris data)

Note that SPICE kernel files have specific naming requirements. In particular, there are
mandated file name extensions based on the type of kernel file (see Section 6C).

PDS Standards Reference 1.18.0 2022-03-31 17

3 Labels

PDS product labels are required for describing the contents and format of each individual
product within an archive. Specifically, the labels contain the description objects that describe
corresponding data objects. The description objects are populated using a standard set of classes,
attributes, and standard values, which are themselves defined in the PDS4 Information Model.
The PDS4 Information Model is expressed, and therefore PDS labels are written, in the
eXtensible Markup Language (XML). Thus, a PDS label is an “XML document”.

In order for any XML document (including a PDS label) to meet the XML standard, it must be
both “well formed” and “valid”. A well-formed XML document must have correct XML syntax;
a valid XML document must conform to the rules of XML schema document(s) (XSD) and
Schematron document(s) (SCH). XSDs are used to define the large-scale requirements for the
labels — classes, attributes, and sequencing. Schematron is used for the fine control within
lower level contexts — values and relationships between attributes within a single class.

Thus, in order for a label to comply with PDS4 standards, it must:
* have correct XML syntax

* be compliant with the class and attribute structures defined by the PDS and relevant
discipline nodes and missions in their respective XSDs

* be compliant with the rules governing specific attributes and their values as set by the
PDS and relevant discipline nodes and missions in their respective Schematron files

* be compliant with the rules governing both URI namespace constructs and fully
resolvable schema location constructs to the PDS4 “released” repository for referenced
XSD and SCH documents.

* have a file name ending with either the extension “xml” or “Iblx”.

PDS4 schemas are supplied to data providers by the PDS. Missions and other data providers
must not modify these pre-existing schemas; however, they may extend existing classes and
provide additional attributes in their own dictionary schemas, with the approval of a PDS
discipline node. Schemas controlled by international agencies may be modified at the discretion
of the stewards of those schemas, without the need for PDS approval.

Under PDS4, all product labels are detached from the files containing the digital objects they
describe. There is one PDS4 label for every product. Each product may contain one or more
data objects. The digital objects of a given product may all reside in a single file*, or they may
be stored in multiple, separate files. However, a single digital object may not reside in multiple
files.

Figure 3-1 shows the general structure of a label, simplified to typical components. “XML
Declaration and Schema Reference” is a few lines of XML overhead required for label
implementation; the remainder of the label is defined by the PDS4 Information Model. Root

Tag, File Area Definition, and End Tag are placeholders, which vary among

4 Except for documents, in which case each object must be in a separate file.

PDS Standards Reference 1.18.0 2022-03-31 18

labels; the first points to the data object, the second describes format and content of the
associated physical file(s) if present, while the third marks the end of the label.
Identification Area provides ‘fingerprints’ and historical information about the product,
Observation Area provides information on how the data (or equivalent) were acquired.
Reference List points to other sources of information about the product that a user may
wish to pursue. File Area Definition describes format and objects contained in the
associated physical file(s).

XML Declaration and Schema Reference
Root Tag
Identification_Area
Alias_List
Citation_Information
Modification_History
Observation_Area
Time_Coordinates
Primary_Result_Summary
Investigation_Area
Observing_System
Target_Identification
Mission_Area
Discipline_Area
Reference List
Internal_Reference
External Reference
Source_Product_Internal
Source_Product_External
File_Area_Definition
File
Data_Object_Definition
End Tag

Fig. 3-1. Simplified label structure

Data providers should consult the Information Model for details and the Data Provider’s
Handbook for suggestions on how to construct actual labels. Most of the top-level components
have nested classes that are not shown in Figure 3-1.

PDS Standards Reference 1.18.0 2022-03-31

19

4 Fundamental Data Structures

There are four fundamental data structures that may be used for archiving data in the PDS. All
products delivered to the PDS must be constructed from one or more of these structures. These
four fundamental structures are described using four base classes: Array (used for homogeneous
N-dimensional arrays of scalars), Table_Base (used for repeating records of heterogeneous
scalars), Parsable_Byte_Stream (a stream of bytes that can be parsed using standardized rules),
and Encoded_Byte_Stream (an encoded stream of bytes). All other digital object classes in the
PDS are derived from one of these four base classes.

4A Array

The first of the four basic PDS4 structures is the Array. Any data structure that consists of fixed-
length rows of homogeneous elements in any number of dimensions must be described using the
Array class or one of its subclasses. As two- and three-dimensional (2-D and 3-D, respectively)
arrays are among the most commonly used data structures in science, the discussion below will
focus on them.

4A.1 Storage Order and Index Order - Definitions

The location of a particular element in a 2-D array is specified using its row number (first index)
and column number (second index) when using standard matrix notation. Thus, in the array
shown below, the position of the “2” (row 1, column 2) is specified using the notation (1,2),
while the position of the “4” (row 2, column 1) is specified as (2,1).

123
456

An N-dimensional array is always stored in computer memory or in a data file as a linear
sequence of numbers. There are two ways to store 2-D array data in linear memory: row-major
order and column-major order. In row-major storage, the rows of the array are stored
sequentially. In column-major storage, the columns are stored sequentially.

Thus, using the above notation, a row-major 2x3 array would be stored this way in memory:

(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)

or, using the numbers in the example above, the values would be stored as follows:

123456

PDS Standards Reference 1.18.0 2022-03-31 20

The same array, in column-major order, would be stored this way:

(1,1), (2,1), (1,2), (2,2), (1,3), (2,3)
or:
142536

PDS uses the terminology Last_Index_Fastest as a synonym for 2-D row-major order and
First_Index_Fastest as a synonym for 2-D column-major order. The PDS terms generalize
immediately to N-dimensional arrays, whereas the meanings of “row” and “column” become
ambiguous. In an N-dimensional array with Last_Index_Fastest, the next to last index varies
next to fastest and the first index varies slowest.

Last_Index_Fastest (row-major) is the required storage order for PDS4 array data. Note that this
does not require modifying data already stored in First_Index_Fastest (column-major) order;
only the order in which the axes are defined in the label needs to be switched. See the discussion
below under Axis Meaning for more information. For example, the PDS4 label for a two-
dimensional array stored in First_Index_Fastest order should define the row axis first and the
column axis second. The PDS4 label for an array stored in Last_Index_Fastest order should
define the column axis first and the row axis second.

4A.2 Storage and Index Order - Conventions in Popular Software Environments

FORTRAN, IDL, and MATLAB arrays are stored in First_Index_Fastest (column-major) order;
all other major programming languages store arrays in Last_Index_Fastest (row-major) order.

Both storage orders were permitted in PDS3 data, but Last_Index_Fastest (row-major) was the
default and recommended storage order.

FITS format uses First_Index_Fastest storage order if one assumes that the shape of the array is
defined by (NAXIS1, NAXIS?2, ...). However, the popular FITS programming libraries cfitsio
and pylab describe the arrays as Last_Index_Fastest, i.e., with the shape (..., NAXIS2, NAXISI).

VICAR indices are listed in First_Index_Fastest order, although this only affects the definitions
of keywords N1, N2, N3, and N4. In practice, VICAR mixes together the issues of storage order
and axis meaning, using other keywords NS, NL, NB, and ORG.

ISIS produces arrays in First_Index_Fastest storage order by default. ISIS has an output
parameter switch that allows arrays to be produced in Last_Index_Fastest order.

4A.3 Array Storage Elements

PDS accommodates only binary data in arrays (no character formats). Characteristics of the
homogeneous elements (or pixels) in an array must be described using the Element_Array class.

PDS Standards Reference 1.18.0 2022-03-31 21

4A.4 Axis Meaning

In an N-dimensional array, each axis needs to be assigned a meaning. Common uses of axes are
for spatial coordinates, RGB color, frequency or wavelength, and time.

PDS uses the terms Line and Sample to distinguish the two axes of a displayed array. It shares
this usage with VICAR and ISIS, but not FITS. The relationship is defined exclusively by the
storage order in the file, with the line number increasing more slowly than the sample number.

This means that, for Last_Index_Fastest ordering of a 2-D array, the first index would be the
slower varying or the Line dimension, while the second index would be the faster varying or
Sample dimension; the array would have index order (Line, Sample).

In an array with two spatial dimensions and one spectral dimension, PDS uses the term Band to
designate the spectral axis. The array elements may be stored in the file in one of three possible
storage orders. The index of the spectral axis may vary faster than those of both spatial axes,
slower than both, or in between the two. An array in which the band (spectral) number varies
slower than the line and sample numbers is typically referred to as band sequential. An array in
which the band number varies faster than the line and sample numbers is typically identified as
sample interleaved or band interleaved by pixel. An array in which the band number varies
slower than the sample number, but faster than the line number, is referred to as line interleaved
or band interleaved by line. For Last_Index_Fastest storage, a 3-D band sequential array
(sometimes known as a ‘cube’) would have index order (Band, Line, Sample), a sample
interleaved array would have index order (Line, Sample, Band), and a line interleaved array
would have index order (Line, Band, Sample).

To maximize the efficiency of playing potentially large movies (Array_3D_Movie), the temporal
axis should be the slowest varying axis.

Particle data often have one or more look directions (for example, polar and azimuthal angles)
and an energy dimension. While these data have similarities to ‘band sequential’ formats, they
are not image data in the traditional sense.

The characteristics of each array axis are modeled using the Axis_Array class. There must be one
(and only one) Axis_Array class present in the label for each dimension of an array.

4A.5 Display Orientation

Properly defining the orientation in which an image should be presented on a display device is
important when an array has two spatial dimensions. Each spatial axis of the array is associated
with a direction on the display device. In most image display standards (including this one) the
Sample, or faster varying axis, is associated with the horizontal direction on the display device.
The Line, or slower varying axis, is associated with the vertical direction.

By almost universal convention, samples are displayed on devices from left to right. There is
not, however, unanimity in how the line dimension should be handled. FITS, for example,
assumes lines increase from bottom to top; VICAR and ISIS count lines from top to bottom.
PDS leaves the choice of line display direction up to the data provider. This information (e.g.,
down, up) is encoded in Array labels using the Display_Settings.Display_Direction class within
the Discipline_Area of a label. These classes are in the Display dictionary — ‘disp’ namespace.

PDS Standards Reference 1.18.0 2022-03-31 22

4B Table Base

The second of the four basic PDS4 structures is Table_Base. Data structures that consist of
fixed-length rows of heterogeneous elements must be described using the Table_Base class or
one of its subclasses.” At the current time, only two-dimensional tables are permitted.

Conceptually, tabular data consist of named columns containing data values at fixed locations.
The data may consist of numbers and character strings including dates, times, and Boolean
values; but any one column — also known as a field — contains only values of a single type.

Physically, the data are stored as a sequence of identically structured records where each record
may be terminated by a record delimiter (required for Table_Character). Fields within each
record are of fixed length and begin at fixed locations. Since both field lengths and record
lengths are fixed, field values can be identified by position alone. However, field delimiters may
optionally be included.

The data may be represented in binary, ASCII, or UTF-8. Binary tables must be described using
the Table_Binary subclass of Table_Base, and ASCII and UTF-8 tables must be described using
the Table Character subclass. These two structures are similar; the former contains records
described using a Record_Binary class and the latter contains records described using a
Record_Character class which are followed by record delimiters. Because the overall structure
and associations are very similar, only Table_Character is discussed in detail. An example
Table Character is below:

A-2 S After Deployment 2.3 0.9 7.9 1.2 7.4 0.7<CR><LF>
A-3 R Barnacle Bill 3.2 1.3 3.0 0.5 10.8 1.1<CR><LF>
A-4 S Next to Yogi 3.8 1.5 8.3 1.2 9.1 0.9<CR><LF>
A-5 S Dark Next to Yogi 2.8 1.1 7.5 1.1 8.7 0.9<CR><LF>
A-7 R Yogi 1.7 0.7 5.9 0.9 9.1 0.9<CR><LF>

The Record_Character class is used to describe the structure of each record in the table.

4B.1 Fields

There must be one explicitly defined Field_Character class for every field in a Record_Character
except when Group_Field_Character can be used. Field definitions within a label must be in the
same order as the physical appearance of the fields in the record.

4B.1.1 Field Length

Attribute <field_length> gives the number of bytes in a fixed-width field. Field delimiters (if
any) and bracketing double quotes around character strings (if any) are not included in the count.

3 See Section 4C.1 for information on table-like structures with variable length records.

PDS Standards Reference 1.18.0 2022-03-31 23

4B.1.2 Field Formats

Attributes <field_format> and <validation_format> give the magnitude and precision of the data
value.

<field_format> describes the general format of a value in a field.

For binary tables, this is used to format the value for output, particularly to specify the
appropriate number of significant digits when converting real values.

For character tables, <field_format> is used to describe the maximum length and alignment of
the data. <field_format> also gives an indication of the maximum precision of real numbers, but
does not require all values to have this precision.

<validation format> is used with character tables to further constrain a field’s values. When a
<validation_format> is present, the data in a table must match the format exactly in order to be
valid. Additionally, if <validation_format> is present, it must not conflict with the field format.
<validation_format> is not used for binary or delimited tables.

The specifier used in <field_format> and <validation_format> must be of an integer type if the
field data type is a form of integer, or a floating point type if the field data type is a form of float,
and of a string type for all other field data types.

Hokeok

The formation rule for a <field_format> or <validation_format> value is

$[+]-1width[.precision]specifier

where square brackets indicate an optional component, “%”is the percent sign (which must
precede every field format value), and:

[+1-] denotes either a "+" or "-", but never both. The "-" may be used for string
fields, to indicate that the string is (or should be) left-justified in the field. This
is actually the preferred way to present most string values in character tables,
so the <field_format> or <validation_format> value for fields with a data type
of ASCII_String will nearly always begin with a "-". Similarly, the "-" denotes
left justification for any of the date/time type fields. The "-" prefix is
forbidden for all numeric fields (integers, floating point numbers, and
numbers using scientific notation). The "+" may be used with numeric fields
to indicate that an explicit sign is included in the field for input and should be
displayed on output. In PDS4 labels, the "+" is forbidden for string fields.

width is the potential total width of the field — i.e., the width of the widest value
occurring in the field. width is an integer indicating the maximum number
of characters needed for the complete representation of the largest (in terms of
display bytes, not necessarily magnitude) value occuring, or potentially
occuring, in the field. This should include bytes for signs, decimal points, and

PDS Standards Reference 1.18.0 2022-03-31 24

exponents. In the case of string values, it is the maximum width from the first
non-blank character to the last non-blank character. It does not include bytes
for field delimiters or double quotes (“) around character strings, which are
not considered part of the field. In character tables, it must be the same as
<field_length> for scalar fields.

mnn

width is separated from precision by a decimal point ("."). If there is no
precision specified, the decimal point must be omitted.

precision is the number of digits following the decimal point for real numbers (but is
otherwise ignored). precision is used in three different ways:

1. For real numbers, it indicates the number of digits to the right of the
decimal point.

2. For integers, it indicates that the integer will be zero-padded on the left
out to the full field width. For example, the value "2" in "$3.3d"
formatis "002".

3. For strings, it signifies the maximum number of characters from the
actual string value that should be printed. (It is possible in programming,
for example, to print no more than the first 10 characters from a string,
but require that the output field be left-justified and padded with at least
5 blanks by using a specifier of "$15.10s".) In PDS4 labels, if

precision isincluded for a string format, it must be equal to width.

specifier is exactly one of the characters in the set [doxfeEs] where

d indicates a decimal integer
o indicates an unsigned octal integer
x indicates an unsigned hexidecimal number

f indicates a floating point number in the format [-]ddd.ddd, where the
actual number of digits before and after the decimal point is
determined by the preceding width and precision values (note
that width includes the decimal point and any sign).

e, E indicates a floating point number in the format /-/d.ddde+/-dd or
[-]d.dddE+/-dd respectively where "+/-" stands for exactly one
character (either "+" or "-"), there is always exactly one digit to the
left of the decimal point, and the number of digits to the right of the
decimal point is determined by the preceding precision value

(note that the width includes all digits, signs, and the decimal point).

s indicates a string value. Note that strings should generally be left-
justified in fixed width character tables and on output from a binary

PDS Standards Reference 1.18.0 2022-03-31 25

table, so most <field_format> values ending in "s" should begin with

"non

4B.2 Groups

Tables are constructed from records, and records are constructed from fields. Repeating sets of
fields may be ‘grouped’ within a record, simplifying their definition.

The Group class defines the set of (repeating) fields and, possibly, (sub) groups. Required group
attributes include:

<fields> the number of scalar fields in the repeating structure
<groups> the number of (sub)groups in the repeating structure

<repetitions> the number of repetitions of the repeating structure
Fields and groups may be numbered at each level of nesting using the optional attributes

<field_number> the position of a field within a series of fields, counting from 1

<group_number> the position of a group within a series of groups, counting from 1

If two fields within a record are physically separated by one or more groups, they have
consecutive field numbers; the fields within the intervening group(s) are numbered separately.
Fields within a group separated by one or more (sub)groups, will also have consecutive field
numbers. Similarly, group numbering is continuous across intervening fields.

4C Parsable Byte Stream

A parsable byte stream is a stream of bytes, either binary or character, that can be interpreted
according to a standard set of rules. For example, a simple ASCII text file can be a parsable byte
stream. It consists of a stream of character data; lines are delimited by a standard set of
characters (usually the carriage-return line-feed pair). Many different applications are able to
parse this format. An HTML file is also a parsable byte stream:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<body>
<hl>My First Heading</hl>
<p>My first paragraph.</p>
</body>
</html>

PDS Standards Reference 1.18.0 2022-03-31 26

The above file could be parsed and displayed by any browser programmed to understand the
HTML 4.01 standard.

XML labels, comma separated value (CSV) tables, and SPICE kernels are other examples of
parsable byte streams. Several formats of data headers are also recognized by PDS as parsable
byte streams, including CDF, FITS, ISIS, ODL, TIFF, and VICAR headers as well as the PDS
Header. Note that ‘parsable’ is not synonymous with ‘human readable.’

The Parsable_Byte_Stream class and its subclasses are used to describe this form of data. The
attribute <parsing_standard_id> is used to identify the parsing standard to be used.

4C.1 Delimiter Separated Value Format Description

The delimiter-separated value (DSV, or “spreadsheet) format has been used for some time in a
variety of forms for storage and exchange of data between programs and systems. Special cases
include the tab-separated value (TSV) and comma-separated value (CSV) formats. This section
describes a general DSV format; it is based on RFC 4180 (http://tools.ietf.org/html/rfc4180).

The DSV format is defined as follows:
1. The data comprise one or more records.

2. Each record, including the last, is followed by a record delimiter, either the ASCII carriage-
return line-feed pair (denoted <CR><LF>) or just the ASCII line-feed (<LF>). For
example:

aaa, bbb, ccc<CR><LFEF>
227, YYY, XXX<CR><LF>

<CR> and <LF> may be used only in combination as a record delimiter. They may not be
used, either separately or in combination, as part of a field value. Whichever record
delimiter is used (KCR><LF> or <LF>), it must be used consistently for all records.

3. Within each record, there will be one or more fields; fields are separated by field delimiters,
and every record has the same number of fields. All field delimiters are the same. There is
no field delimiter after the last field and before the record delimiter. The field delimiter
must be one of the following characters: comma (,), semi-colon (;), vertical bar (|), or
horizontal tab (<HT>). The first occurrence of one of these characters sets the delimiter to
be used for all other fields. For example:

aaa, bbb, ccc<LF>

defines comma (,) as the delimiter; while:

aaa | bbb |ccce<LF>
aaalb,b|ccc<LFE>

defines the vertical bar (|) to be the delimiter. Each record above contains three fields.
The comma in the second record is part of the second field value.

4. A field may be empty. The interpretation of an empty field will be application and data
type dependent. For example:

PDS Standards Reference 1.18.0 2022-03-31 27

aaa, bbb, ccc<CR><LE>
aaa, , cCc<CR><LF>

has an empty field as the second field in the second record.
5. Leading and trailing spaces in a field are considered part of the field. For example:

aaa, bbb, CCC<CR><LFEF>
22Z,YYY, XXXXXXLCR><LE>

contains three spaces in the third field of the first record, making its field length equal to 6.
A field is the content between two delimiters, and a value is the information contained
within a field. In most cases the field and value are synonymous; in this example, the
application determines whether the value has 3 or 6 characters.

6. Fields may optionally be bracketed by a pair of bounding double quotes. The double
quotes must be the first and last characters between delimiters; they are not counted in the
field length and are not part of the field value. Any characters that are enclosed in double
quotes are considered literal (including delimiters, and leading or trailing spaces); double
quotes override the default specification of the field delimiter in 3 (above). If bracketing
double quotes are used, there may be no double quotes within the field itself. In the
example:

"aaa, bbb", ccc<LE>

the first comma is not treated as a delimiter; it is counted in the field length of the first field
and is part of the corresponding value. The second comma in the record defines the field
delimiter. This record consists of two fields (with values of aaa,bbb and ccc). In another
example:

aaa," bbb", ccc<LFE>

the second and third fields consist of 6 characters each. The spaces in those two fields may
be interpreted differently when the application extracts the values. The spaces in the
second field are considered to be part of the value.

Double quote usage may vary from record to record. There is no requirement that a
particular field be quoted in every record.

A pair of double quotes (,"",) is interpreted as an empty field (length 0).

4C.2 Delimited Tables

The previous section describes the format of delimited tables. This section explains how the
characteristics of those tables must be described in labels.

The Table_Delimited class inherits attributes from the Parsable_Byte_Stream class, and it adds
several more.

Each Table_Delimited class requires one Record_Delimited class, which describes the structure
of all records in the delimited table.

PDS Standards Reference 1.18.0 2022-03-31 28

Although the individual fields may vary in size from one record to the next, the number of fields,
their names, and their data types must remain the same from line to line. There must be one
Field_Delimited class present in the label to describe each field in the table record, except when
Group_Field_Delimited can be used. Field definitions within the label must be in the same order
as the physical appearance of the fields in the record.

The attribute <field_delimiter> must be defined in the Table_Delimited class (and it must be
consistent with the provision in Section 4C.1 item 3). Attribute <maximum_field_length> gives
the maximum number of bytes in a field. Field delimiters and bracketing double quotes around
character strings (if any) are not included in the count. Values for attribute <field_format> are
set as described in Section 4B.1.2.

Repeating sets of fields may be ‘grouped’ within a record, simplifying their definition, using the
Group_Field_Delimited class as described in Section 4B.2.

4D Encoded Byte Stream

The encoded byte stream structure is a byte stream that may only be interpreted after it has been
‘decoded’ according to some well-known algorithm. For example, ‘encoded’ data may have
been compressed and need to be uncompressed before interpretation. It is PDS policy that only
publicly available, open source, widely accepted standards be used for the encoding of digital
objects within the PDS; the attribute <encoding_standard_id> identifies the standard.

The subclasses of the Encoded Byte Stream class include Encoded_Binary (for files such as PDF
and Microsoft Word documents), Encoded_Image (for browse, thumbnail, and document images
stored in formats such as GIF, JPEG, and non-raster TIFF), Encoded_Audio (for ancillary and
browse data in audio formats such as WAVE) and Encoded_Header (for binary headers such as
TIFF headers on raster-formatted TIFF images). Encoded_Byte_Stream is not an option for
Product_Observational.

PDS Standards Reference 1.18.0 2022-03-31 29

5 Data Types

5A Attribute Value Types

Attribute value types are used to classify the data types of attribute values used in XML labels.
These data types are typically specified in class and attribute descriptions in data dictionaries.
For example, an ASCII_Integer value should contain only the characters 0-9, “+”, and “-‘; and
an ASCII_String may contain blanks, carriage-returns, tabs, and other white space characters,
which may or may not be removed, depending on the data type, before the value is interpreted by
a subsequent application.

5A.1 Boolean Types

The PDS boolean data type is based on the primitive boolean type as defined in the World Wide
Web Consortium (W3C) XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes (W3C,
2012b). Permitted values are given in Table SA-1.

Table SA-1. Boolean Types

Data Type Description Permitted Values
ASCII_Boolean True/False indicator true and false (lower
case only), or 1 (true) and O
(false)

5A.2 Date and Time Types

PDS date and time formats are based on the extended formats of cardinal and ordinal date/time
strings as defined in ISO 8601:2004 and as shown in Table 5A-2. Every PDS date- or time-
related attribute and field must be defined using only one of the two possible formats. For
example, the attributes <start_date_time> and <stop_date_time> are defined to be represented in
calendar format. The two formats are represented as:

YYYY-MM-DDThh:mm:ss.ffffffZ (calendar format)

and
YYYY-DOYThh:mm:ss.ffffffz (ordinal format)
where
YYYY is the 4-digit year
MM is the 2-digit month (possible values 01-12)
DD is the 2-digit day of month (possible values (01-31)

PDS Standards Reference 1.18.0 2022-03-31 30

DOY is the 3-digit day of year (possible values 001-365, or 366 in a leap year)

hh is the 2-digit hour (possible values 00-23)
mm is the 2-digit minute (possible values (00-59)
Ss is the 2-digit second (possible values 00-59, or 60 if needed for a leap second)

ffff£ff is decimal fractional seconds (one or more digits commensurate with precision)

Z denotes UTC (may be required or optional depending on type).

e All components except £££f£ff and Z must be left padded with zeroes to reach the
required number of digits.

e All times must be in the 24-hour clock format

e The ASCII period “.” is the only delimiter allowed between the seconds and fractional
seconds components.

e The ASCII colon is the only delimiter allowed between the other time components.

e The ASCII hypen “-“ is the only delimiter allowed between date components.

e An upper case “T” is the only delimiter allowed between date and time components.

e Delimiters between components must be present if there are values on both sides; they
must be omitted if there is not a value on each side.

¢ Precision may be reduced by dropping any delimiter and all components to its right.

¢ A time only format may be obtained by dropping “T” and all components to its left.

¢ Any value not specifically indicated as being UTC by including the “Z” indicator is
assumed to be a local time.

Any data preparer who anticipates archiving data with dates earlier than 15 October 1582 or later
than 31 December 9999 must consult PDS for special instructions.

Native times, such as from spacecraft clock counters, have formats defined in the appropriate
mission or discipline dictionary.

All values for the attributes <start_date_time> and <stop_date_time> must be given in UTC.

The optional variable length decimal fraction of seconds is denoted by [. fff£fff]. [Z]

indicates that the suffix is optional, but PDS strongly encourages its use when the time is given
in UTC.

PDS Standards Reference 1.18.0 2022-03-31 31

Table SA-2. Date and Time Types

Data Type

Description

Permitted Values

ASCII_Date_DOY

An ASCII date
string in ordinal
format.

Date value in either of the following
forms:

YYYY([Z]
YYYY-DOY [Z]

ASCII_Date_YMD

An ASCII date
string in calendar
format.

Date value in any of the following
forms:

YYYY[Z]
YYYY-MM[Z]
YYYY-MM-DD([Z]

ASCII_Date_Time_DOY_UTC

An ASCII
date/time string in
ordinal format
that must be in
Coordinated
Universal Time

(UTC).

Date/time value in any of the following
forms:®

YYYY-DOYThhZz
YYYY-DOYThh :mmZ
YYYY-DOYThh:mm:ss[.ffffff]2z

ASCII_Date_Time_YMD_UTC

An ASCII
date/time string in
calendar format
that must be in
Coordinated

Universal Time
(UTCO).

Date/time value in any of the following
forms: ’

YYYY-MM-DDThh?Z
YYYY-MM-DDThh :mmZ
YYYY-MM-DDThh:mm:ss[.ffffff]2z

ASCII_Date_ Time DOY

An ASCII
date/time string in
ordinal format.

Date/time value in any of the following
forms: ’

YYYY-DOYThh[Z]
YYYY-DOYThh:mm[Z]

YYYY-DOYThh:mm:ss[.ffff£ff] [Z]

ASCII_Date_Time_YMD

An ASCII
date/time string in
calendar format.

Date/time value in any of the following
forms: ’

YYYY-MM-DDThh[Z]
YYYY-MM-DDThh:mm[Z]
YYYY-MM-DDThh:mm:ss[.ffffff] [Z]

® In cases when time information is not available, this format may be truncated to a date string of as little

as the year (YYYY).

PDS Standards Reference 1.18.0 2022-03-31

32

Table SA-2. Date and Time Types

Data Type Description Permitted Values
ASCII _Time An ASCII time Time value in any of the following
string. May be forms:
used for local hh[Z]
times on Earth or
hh:mm[Z]

local solar time
on other planets.

hh:mm:ss[.f£fffff] [Z]

5A.3 Numeric Types

PDS numeric data types are based on a mixture of primitive and derived types defined in W3C,
2012b. The specific base type for each data type is indicated in the Description column in Table

S5A-3.

Table SA-3. Numeric Types

Data Type

Description

Permitted Values

ASCII_Integer

An ASCII character
representation of a signed 64-
bit integer in base 10. Based
on the derived data type
xs:long.

An ASCII string consisting
of the digits O through 9,
optionally prefixed with a
positive “+” or negative “-”
sign. Values must be within
the range -2°63 to 2°63-1,
inclusive.

ASCII_NonNegative_Integer

An ASCII character
representation of an unsigned
64-bit integer in base 10.
Based on the derived data
type xs :unsignedLong.

An ASCII string consisting
of the digits O through 9.
Values must be within the
range 0 to 2764-1, inclusive.

PDS Standards Reference 1.18.0 2022-03-31

33

Table SA-3. Numeric Types

Data Type

Description

Permitted Values

ASCII_Real

An ASCII character
representation of an IEEE 754
64-bit floating point number.
Based on the primitive data
type xs:double.

An ASCII string consisting
of:

An optional sign, consisiting
of '+ or -,

A mantissa, consisting of
one of the following:

e A series of digits from 0-9.

e A series of digits from 0-9,
a decimal point, and an
optional series of digits
from 0-9.

e A decimal point and a
series of digits from 0-9.

An optional exponent,
consisting of:

e The letter 'e' or 'E’,

e An optional sign,
consisiting or '+' or '-'

e A series of digits from 0-9

Values must fit into the value
space of an IEEE 754-2008
binary64 number. PDS does
not allow positive infinity
(INF), negative infinity (-
INF) or not-a- number
(NaN).

ASCII_Numeric_Base2

An ASCII character
representation of a non-
negative unsigned integer in
base 2. This is a PDS defined
data type.

An ASCII string consisting
of the characters 0 and 1.
May not be preceded by any
sign (+/-) notation.

Limited to 255 characters.

ASCII_Numeric_Base8

An ASCII character
representation of a non-
negative unsigned integer in
base 8. This is a PDS defined
data type.

An ASCII string consisting
of the digits O through 7.
May not be preceded by any
sign (+/-) notation.

Limited to 255 characters.

PDS Standards Reference 1.18.0 2022-03-31

34

Table SA-3. Numeric Types

Data Type

Description

Permitted Values

ASCII Numeric_Basel6

An ASCII character
representation of a non-
negative unsigned integer in
base 16. Based on the
primitive data type
xs:hexBinary.

An ASCII string consisting
of the characters O through 9
and A through F or a through
f.

May not be preceded by any
sign (+/-) notation.

Limited to 255 characters.

ASCII._MD5_Checksum

An ASCII representation of a
128-bit hash value calculated
using the MDS5 algorithm
(RFC 1321). Thisis a PDS
defined data type.

An ASCII string consisting
of the characters O through 9
and A through F or a through
f. Must be exactly 32
characters in length.

5A.4 String Types

PDS string data types are based on a mixture of primitive and derived types defined in W3C,
2012b and PDS types derived from these. The specific base type for each data type is indicated
in the Description column in Table SA-4.

Table SA-4. String Types

Data Type

Description

Permitted Values

ASCII_AnyURI

and URL. xs:anyURI.

A URI, and its subclasses URN

See W3C, 2012b

ASCII_BibCode

A bibliographic code as
assigned by the Astrophysics
Data System

See Astrophysics Data
System documentation

ASCII_DOI A Digital Object Identifier See International DOI
(DOI) as assigned by members | Federation
of the International DOI documentation
Federation.

ASCII_LID A PDS logical identifier. See Section 6D.2

ASCIL_LIDVID A PDS versioned identifier See Section 6D.3

(logical identifier plus version
identifier).

PDS Standards Reference 1.18.0 2022-03-31

35

Table SA-4. String Types

Data Type Description Permitted Values

ASCII_LIDVID _LID Either a PDS logical identifier | See Sections 6D.2 and
or PDS versioned identifier. 6D.3

ASCIL_VID A PDS version identifier See Section 6D.3

ASCII_Directory_Path_Name A directory path in UNIX ASCII string of the form
format. dirl/dir2/. See Section

6C.2.
ASCII_File_Name A file name. ASCII string of the form

filename.ext. See Section
6C.1.

ASCII_File_Specification_Name

A directory path and file name
(including file name extension)
in UNIX format.

ASCII string of the form

dirl/dir2/filename.ext.
See Section 6C.

ASCII_Short_String_Collapsed

An ASCII-encoded text string
with white space collapsed —
that is, contiguous spaces, line
feeds, tabs, and carriage returns
have been collapsed into a
single ASCII space character
and leading and trailing spaces
have been removed.

An ASCII string
containing no more than
255 characters and
including no leading or
trailing <SP>, no more
than one contiguous
<SP>, no <LF>, no
<HT>, and no <CR>.

ASCII_Short_String_Preserved | An ASCII-encoded text string An ASCII string of no
with all characters preserved. more than 255
characters.
ASCII_Text_Collapsed An ASClII-encoded text string | An ASCII string

of unlimited length with white
space collapsed — that is,
contiguous spaces, line feeds,
tabs, and carriage returns have
been collapsed into a single
ASCII space character and
leading and trailing spaces
have been removed.

containing no leading or
trailing <SP>, no more
than one contiguous
<SP>, no <LF>, no
<HT>, and no <CR>.

ASCII_Text_Preserved

An ASCII-encoded text string
of unlimited length with all
characters preserved.

An ASCII string.

PDS Standards Reference 1.18.0 2022-03-31

36

Table SA-4. String Types

Data Type

Description

Permitted Values

UTF8_Short_String_Collapsed

A UTF-8 encoded text string
with white space collapsed (see
ASCII_Short_String_Collapsed
above).

A UTF-8 string
containing no more than
255 bytes and including
no leading or trailing
<SP>, no more than one
contiguous <SP>, no
<LF>, no <HT>, and no
<CR>.

UTF8_Short_String_Preserved

A UTF-8 encoded text string
with all characters preserved.

A UTF-8 string of no
more than 255 bytes.

UTF8_Text_Collapsed

A UTF-8 encoded text string
with white space collapsed (see
ASCII_Short_String_Collapsed
above).

A UTF-8 string
including no leading or
trailing <SP>, no more
than one contiguous
<SP>, no <LF>, no
<HT>, and no <CR>.

UTF8_Text_Preserved

A UTF-8 encoded text string
with all characters preserved.

A UTEF-8 string.

PDS Standards Reference 1.18.0 2022-03-31

37

5B Character Data Types

Character data types are used to describe the data formats of character fields in tables.

Table character fields should use the data types described in Table 5B-1. The values described
in Section 5A for Boolean Types (Section 5A.1), Date and Time Types (Section 5A.2), and
Numeric Types (Section 5A.3) may also be used for field descriptions in tables.

Table 5B-1. Character Data Types

Astrophysics Data System.

Data Types Description Permitted Values
ASCII_AnyURI A URI, and its subclasses See W3C, 2012b
URN and URL.
xs:anyURI
ASCII_BibCode A bibliographic code as See Astrophysics Data
assigned by the System documentation.

ASCII_DOI

A Digital Object Identifier
(DOI) as assigned by
members of the
International DOI
Federation.

See International DOI
Federation documentation.

ASCII_File Name

A file name.

ASCII string of the form:
filename.ext. See Section
6C.1.

ASCII_File_Specification_Name

A directory path and file
name (including file name

extension) in UNIX format.

ASCII string of the form:

dirl/dir2/filename.ext. See
Section 6C.

ASCIIL_LID A PDS logical identifier. See Section 6D.2.
ASCII_LIDVID A PDS versioned identifier | See Section 6D.3.
(logical identifier plus
version identifier).
ASCII_VID A PDS version identifier. See Section 6D.3.
ASCII_String An ASCII string. An ASCII string.

UTF8_String

A UTEF-8 string.

A UTEF-8 string.

PDS Standards Reference 1.18.0 2022-03-31

38

5C Binary Data Types

Binary data types are used to describe data formats of fields in binary tables and array elements
in arrays.

5C.1 Integers

5C.1.1 Signed LSB Integers

This section describes signed integers stored in Least Significant Byte (LSB) first (also known as
‘little-endian’) order. In this section the following definitions apply:

Bl -B8 Arrangement of bytes as they appear when reading a file — that is, read byte B1 first,
then B2, B3 and B4, up through BS.

i-sign Integer sign bit — bit 1 in the highest order byte

1118 Arrangement of bytes in the integer, from lowest order (I1) to highest order (I8). The
bits within each byte are counted from left to right (b1 to b8) but interpreted from
right to left (i.e., lowest value = bit 8, highest value = bit 1), in the following way:

8-byte integers (Fig. 5C-1):

In I1, bits b1 to b8 represent 27 through 2°, respectively
In 12, bits bl to b8 represent 2! through 28, respectively
In I3, bits b1 to b8 represent 22° through 2!, respectively
In I4, bits bl to b8 represent 2°! through 24, respectively
In IS, bits b1 to b8 represent 2°° through 22, respectively
In 16, bits bl to b8 represent 2*7 through 2, respectively
In 17, bits b1 to b8 represent 2°° through 2%, respectively
In I8, bits b2 to b8 represent 2%? through 2, respectively

4-byte integers (Fig. 5C-2):
In 11, bits b1 to b8 represent 27 through 2°, respectively
In 12, bits bl to b8 represent 2! through 28, respectively
In I3, bits b1 to b8 represent 2>° through 2!, respectively
In 14, bits b2 to b8 represent 2°° through 224, respectively

2-byte integers (Fig. 5C-3):

In I1, bits bl to b8 represent 27 through 2°, respectively
In 12, bits b2 to b8 represent 2'* through 28, respectively

PDS Standards Reference 1.18.0 2022-03-31 39

1-byte integer (Fig. 5C-4):
In I1, bits b2 to b8 represent 26 through 20 respectively

All negative values are represented in two’s complement.

data_type = Signed LSB8

i-sign
11 12 13 14 15 16 17 1 18
bl b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl
|76543210|76543210|76543210|76543210|76543210|76543210|76543210|765432 1o|
B1 B2 B3 B4 B5 B6 B7 B8

Fig. 5C-1. Signed 8-byte integer, least significant byte (I1) first

data_type = Signed LSB4

i-sign
11 12 13 1 14
bl b8 bl b8 bl b8 bl b8
76543210)76543210|76543210|76543210
Bl B2 B3 B4

Fig. 5C-2. Signed 4-byte integer, least significant byte (I1) first

data_type = Signed LSB2

PDS Standards Reference 1.18.0 2022-03-31 40

i-sign

11 l 12

bl b8 bl b8

76543210(76543210
Bl B2

Fig. 5C-3. Signed 2-byte integer, least significant byte (I1) first

data_type = SignedByte

i-sign
l 11
bl b8
76543210
B1

Fig. 5C-4. Signed 1-byte integer

5C.1.2 Unsigned LSB Integers

This section describes unsigned integers stored in LSB format. In this section the following
definitions apply:

Bl - B8 Arrangement of bytes as they appear when reading a file — that is, read byte B1 first,
then B2, B3 and B4, up through BS.

11-18 Arrangement of bytes in the integer, from lowest order (I1) to highest order (I8).
The bits within each byte are counted from left to right (b1 to b8) but interpreted
from right to left (i.e., lowest value = bit 8, highest value = bit 1), in the following
way:

8-byte integers (Fig. 5C-5):
In I1, bits b1 to b8 represent 27 through 2°, respectively
In 12, bits bl to b8 represent 2! through 28, respectively
In I3, bits b1 to b8 represent 2>° through 2!, respectively
In I4, bits bl to b8 represent 2°! through 224, respectively

PDS Standards Reference 1.18.0 2022-03-31 41

In I5, bits bl to b8 represent 239 through 232, respectively
In 16, bits b1 to b8 represent 2*7 through 2%°, respectively
In 17, bits b1 to b8 represent 253 through 248 respectively
In I8, bits b1 to b8 represent 2%° through 2, respectively

4-byte integers (Fig. 5C-6):
In I1, bits bl to b8 represent 27 through 20 respectively
In 12, bits b1 to b8 represent 2! through 28, respectively
In I3, bits bl to b8 represent 223 through 216, respectively
In 14, bits b1 to b8 represent 23! through 224, respectively
2-byte integers (Fig. 5C-7):
In I1, bits bl to b8 represent 27 through 2°, respectively
In 12, bits b1 to b8 represent 2!° through 28, respectively

1-byte integers (Fig. 5C-8):
In I1, bits bl to b8 represent 27 through 2°, respectively

data_type = Unsigned LSB8

11 12 13 14 15 16 17

b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl

|76543210|76543210|76543210|76543210]76543210|76543210|765432 10|76543210|

B1 B2 B3 B4 B5 B6 B7

Fig, 5C-5. Unsigned 8-byte integer, least significant byte (I1) first.

data_type = Unsigned LSB4

11 12 13 14
b1 b8 bl b8 b1 b8 bl b8
76543210176543210|76543210|76543210
Bl B2 B3 B4

Fig. 5C-6. Unsigned 4-byte integer, least significant byte (I1) first.

PDS Standards Reference 1.18.0 2022-03-31

42

data_type = Unsigned LSB2

11 12
b1 b8 bl b8
76543210)76543210
Bl B2

Fig. 5C-7. Unsigned 2-byte integer, less significant byte(I1) first.

data_type = UnsignedByte

11
bl b8
76543210
Bl

Fig. 5C-8. Unsigned 1-byte integer

5C.1.3 Signed MSB Integers

This section describes the signed integers stored in Most Significant Byte (MSB) first (also
known as ‘big-endian’) order. In this section the following definitions apply:

Bl - B8 Arrangement of bytes as they appear when read from a file — that is, read B1 first,
then B2, B3, and B4, up through BS.

i-sign Integer sign bit — bit 1 in the highest order byte

1118 Arrangement of bytes in the integer, from lowest order (I1) to highest order (I8). The
bits within each byte are counted from left to right (b1 to b8) but interpreted from
right to left (i.e., lowest value = bit 8, highest value = bit 1) in the following way:

8-byte integers (Fig. 5C-9):
In I1, bits b1 to b8 represent 27 through 2°, respectively
In 12, bits bl to b8 represent 2! through 28, respectively
In I3, bits b1 to b8 represent 2>° through 2!, respectively
In I4, bits bl to b8 represent 2°! through 224, respectively
In IS, bits b1 to b8 represent 2°° through 22, respectively
In 16, bits bl to b8 represent 2*7 through 2, respectively

PDS Standards Reference 1.18.0 2022-03-31 43

In 17, bits bl to b8 represent 253 through 248 respectively
In I8, bits b2 to b8 represent 262 through 23°, respectively

4-byte integers (Fig. 5C-10):
In 11, bits b1 to b8 represent 27 through 2°, respectively
In 12, bits b1 to b8 represent 2! through 28, respectively
In I3, bits bl to b8 represent 223 through 216, respectively
In 14, bits b2 to b8 represent 2°° through 224, respectively

2-byte integers (Fig. 5C-11):
In I1, bits b1 to b8 represent 27 through 2°, respectively

In 12, bits b2 to b8 represent 2'* through 28, respectively

1-byte integers (Fig. 5C-4):
In 11, bits b2 to b8 represent 2° through 2°, respectively

All negative values are represented in two’s complement.

data_type = SignedMSB8

i-sign
l 18 17 16 15 14 13 12 11
b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl
|76543210|765432 10/76543210/76543210|76543210|76543210|765432 10|76543210|
B1 B2 B3 B4 B5 B6 B7 B8

Fig. 5C-9. Signed 8-byte integer, most significant byte (I8) first.

data_type = SignedMSB4

PDS Standards Reference 1.18.0 2022-03-31 44

i-sign

l 14 13 12 11

b1 b8 b1 b8 bl b8 bl b8

76543210]76543210|76543210|76543210
Bl B2 B3 B4

Fig. 5C-10. Signed 4-byte integer, most significant byte (I4) first.

data_type = SignedMSB2

i-sign
1 12 11
bl b8 bl b8
76543210176543210
B1 B2

Fig. 5C-11. Signed 2-byte integer, more significant byte (I12) first

The signed 1-byte integer is shown in Figure 5C-4.

5C.1.4 Unsigned MSB Integers

This section describes unsigned integers stored in MSB format. In this section the following
definitions apply:

Bl — B8 Arrangement of bytes as they appear when read from a file — that is, read B1 first,
then B2, B3, and B4, up through B8)

11 -18 Arrangement of bytes in the integer, from lowest order (I1) to highest order (I8). The
bits within each byte are counted from left to right (b1 to b8) but interpreted from
right to left (i.e., lowest value = bit 8, highest value = bit 1) in the following way:

8-byte integers (Fig. 5C-12):

PDS Standards Reference 1.18.0 2022-03-31 45

In I1, bits b1 to b8 represent 27 through 2°, respectively
In 12, bits b1 to b8 represent 2! through 28, respectively
In I3, bits bl to b8 represent 223 through 216 respectively
In 14, bits b1 to b8 represent 23! through 224, respectively
In IS, bits bl to b8 represent 239 through 232, respectively
In 16, bits b1 to b8 represent 2*7 through 2*°, respectively
In 17, bits bl to b8 represent 253 through 248 respectively
In I8, bits b1 to b8 represent 2% through 23°, respectively

4-byte integers (Fig. 5C-13):
In I1, bits b1 to b8 represent 27 through 2°, respectively
In 12, bits bl to b8 represent 2! through 28, respectively
In I3, bits b1 to b8 represent 22° through 2!, respectively
In 14, bits b1 to b8 represent 23! through 22*, respectively

2-byte integers (Fig. 5C-14):
In I1, bits b1 to b8 represent 27 through 2°, respectively
In 12, bits bl to b8 represent 2! through 28, respectively

1-byte integers (Fig. 5C-8):
In I1, bits b1 to b8 represent 27 through 2°, respectively

data_type = UnsignedMSBS8

18 17 16 15 14 13 12 11
b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl
|7654321OI76543210|76543210|76543210|76543210|76543210|76543210|76543210|
B1 B2 B3 B4 B5 B6 B7 B8

Fig, 5C-12. Unsigned 8-byte integer, most significant byte (I8) first.

data_type = UnsignedMSB4

PDS Standards Reference 1.18.0 2022-03-31 46

14 13 12 11

bl b8 bl b8 bl b8 bl b8

76543210176543210|76543210{76543210

Bl B2 B3 B4
Fig. 5C-13. Unsigned 4-byte integer, most significant byte (I4) first

data_type = UnsignedMSB2

12 11
bl b8 bl b8
76543210)76543210
Bl B2

Fig. 5C-14. Unsigned 2-byte integer, more significant byte (I12) first

The unsigned 1-byte integer is shown in Figure 5C-8.

5C.2 Reals

This section describes the internal IEEE floating-point representation of real numbers. In this

section the following definitions apply:

Bl — B8 Arrangement of bytes as they appear when read from a file — that is, read B1 first,

then B2, B3, and B4 up through BS.

m-sign Mantissa sign bit

El-E2 Arrangement of the portions of the bytes that make up the exponent, from lower
order (E1) to higher order (E2). The bits within each byte are counted from left to
right (b1 to b8) but interpreted from right to left (i.e., lowest value = rightmost bit in
the exponent part of the byte, highest value = leftmost bit in the exponent part of the

byte) in the following way:

8-byte double precision (see Figure 5C-15 for LSB and Figure 5C-17 for MSB):

In E1, bits b1 to b4 represent 2* through 2°, respectively
In E2, bits b2 to b8 represent 2'° through 24, respectively

Exponent bias = 1023

4-byte single precision (see Figure 5C-16 for LSB and Figure 5C-18 for MSB):

In E1, bit bl represents 2°
In E2, bits b2 to b8 represent 27 through 2!, respectively

PDS Standards Reference 1.18.0 2022-03-31

Exponent bias = 127

M1 —-M7 Arrangement of the portions of the bytes that make up the mantissa, from lowest
order fraction (M1) to the highest order fraction (M7). The bits within each bytes are
counted left to right (b1 to b8) but interpreted as inverse fractional powers of two
from right to left with the rightmost bit having the smallest value, in the following
way:

8-byte double precision (see Figure 5C-15 for LSB and Figure 5C-17 for MSB):

In M1, bits b5 to b8 represent 1/2! through 1/2*, respectively

In M2, bits b1 to b8 represent 1/2° through 1/2'2, respectively

In M3, bits b1 to b8 represent 1/2!° through 1/2%, respectively
In M4, bits b1 to b8 represent 1/2%! through 1/22®, respectively
In M5, bits b1 to b8 represent 1/22° through 1/2%, respectively
In M6, bits b1 to b8 represent 1/237 through 1/2*, respectively
In M7, bits b1 to b8 represent 1/2* through 1/2%2, respectively

4-byte single precision (see Figure 5C-16 for LSB and Figure 5C-18 for MSB):
In M1, bits b2 to b8 represent 1/2! through 1/27, respectively
In M2, bits b1 to b8 represent 1/2% through 1/2'5, respectively
In M3, bits b1 to b8 represent 1/2!6 through 1/2?*, respectively

The stored value may be recovered as follows:
(exponent—bias)

1.mantissa x 2

Note that the integer part (“1.”) is implicit in all formats as described above. In all cases the
exponent is stored as an unsigned, biased integer (that is, the stored exponent value - bias value =
true exponent).

data_type = IEEE754L.SBDouble

PDS Standards Reference 1.18.0 2022-03-31 48

m-sign

M1 M2 M3 M4 M5 M6 E1l M7l E2

b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl

|76543210|76543210|765432 10|76543210I76543210]76543210|76543210|76543210|

B1 B2 B3 B4 B5 B6 B7 B8
Fig. 5C-15. IEEE 754 double precision real, least significant byte (M 1) first.

data_type = IEEE754L.SBSingle

m-sign
M1 M2 E1 M3 l
bl b8 bl b8 bl b8 bl b8
76543210176543210|76543210|76543210
Bl B2 B3 B4

Fig. 5C-16. IEEE 754 single precision real, least significant byte (M1) first.
data_type = IEEE754MSBDouble

m-sign

Iv E2 E1 M7 M6 M5 M4 M3 M2 M1

b8 bl b8 bl b8 bl b8 b1 b8 bl b8 b1 b8 bl b8

|76543210|76543210|76543210|76543210|76543210]76543210|76543210|76543210|
B1 B2 B3 B4 B5 B6 B7 B8

Fig. 5C-17. IEEE 754 double precision real, most significant byte (m-sign plus E2) first.

data_type = IEEE754MSBSingle

m-sign

l E2 E1 M3 M2 M1

bl b8 bl b8 bl b8 bl b8

76543210)76543210|76543210{76543210

Bl B2 B3 B4
Fig. 5C-18. IEEE 754 single precision real, most significant byte (M-sign plus E2) first

PDS Standards Reference 1.18.0 2022-03-31 49

5C.3 Complex

This section describes the internal IEEE floating-point representation of complex numbers,
illustrated in Figures 5C-19, 5C-20, 5C-21, and 5C-22. IEEE complex numbers consist of two
IEEE-format real numbers (Section 5C.2) of the same precision, which are contiguous in
memory. The first number represents the real part and the second number represents the
imaginary part of the complex value.

data_type = ComplexLLSB16

Real Part: m-sign
M1 M2 M3 M4 M5 M6 E1 M7 l E2
b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl
|76543210|76543210]76543210|765432 10{765432 10]76543210|76543210]76543210|
B1 B2 B3 B4 BS B6 B7 B8
Imaginary Part: m-sign
M1 M2 M3 M4 M5 M6 E1 M7 l
b8 bl b8 bl b8 b1 b8 bl b8 bl b8 bl b8 bl
|76543210|76543210|76543210|76543210|765432 10|76543210|76543210]76543210|
B1 B2 B3 B4 BS B6 B7 B8

Fig. 5C-19. Double precision complex, least significant bytes (M1) first; the real component is first, the
imaginary component second.

data_type = ComplexLLSB8

PDS Standards Reference 1.18.0 2022-03-31 50

Real Part: m-sign

M1 M2 E1 M3 1 E2

bl b8 bl b8 bl b8 bl b8

76543210(76543210{76543210(76543210
Bl B2 B3 B4

Imaginary Part: m-sign

M1 M2 E1 M3 l E2

bl b8 bl b8 bl b8 bl b8

76543210|76543210|76543210|76543210

Bl B2 B3 B4

Fig. 5C-20. Single precision complex, least significant bytes (M1) first.
data_type = ComplexMSB16

Real Part:

m-sign

l E2 E1 M7 Mé M5 M4 M3 M2 M1

b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl

[76543210|76543210|76543210|76543210|76543210|76543210|76543210|76543210|
B1 B2 B3 B4 BS B6 B7 B8

Imaginary Part:
m-sign

l E2 El M7 M6 M5 M4 M3 M2 M1

b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl b8 bl

|76543210|76543210|76543210|76543210|765432 10|76543210|76543210|76543210|
B1 B2 B3 B4 B5 B6 B7 B8

Fig. 5C-21. Double precision complex, most significant bytes (m-sign plus E2) first.

data_type = ComplexMSBS8

PDS Standards Reference 1.18.0 2022-03-31 51

Real Part:

m-sign
1 E2 E1 M3 M2 M1
bl b8 bl b8 bl b8 bl b8
76543210|76543210(76543210|76543210
Bl B2 B3 B4

Imaginary Part:

m-sign
1 E2 E1 M3 M2 M1
bl b8 bl b8 bl b8 bl b8
76543210)76543210|76543210|76543210
Bl B2 B3 B4

Fig. 5C-22. Single precision complex, most significant bytes (m-sign plus E2) first.

5C.4 Bit Strings

Bit strings are sequences of contiguous bits extending over one or more sequential bytes’; PDS
places no general constraints on the location or length of bit strings. However, there are
restrictions on their use in observational data — see the PDS Policy on Packed

Data (https://pds.nasa.eov/datastandards/documents/policy/PolicyOnPackedData04192017.pdf).

In the examples below, B1 is the first byte read and B2 is the second.

Bits are numbered left to right within each byte (b1 to b8). When the bit string covers more than
one byte, the numbering may be extended (in the examples below the numbering could extend
from b1 to b16 rather than the two b1 to b8 ranges shown).

The remainder of this section describes signed and unsigned integers stored as bit strings. Such
bit strings are limited to 64 bits each.

5C.4.1 Unsigned Integers Stored as Bit Strings

Significance of the bits (that is, their values) increases from right to left within the bit string —
from 2° at the extreme right to 21 at the extreme left, where n is the number of bits in the string.

"To ensure bit contiguity across boundaries, bytes are read sequentially.

PDS Standards Reference 1.18.0 2022-03-31 52

https://pds.nasa.gov/datastandards/documents/policy/PolicyOnPackedData04192017.pdf

Fig. 5C-23 shows an example unsigned bit string that extends from bit b6 of B1 to bit b2 of B2
(five bits total).

In B1, bits b6 to b8 represent 2*, 23, and 27, respectively.
In B2, bits bl and b2 represent 2! and 2°, respectively

data_type = UnsignedBitString

value
bl b8 bl b8
76543210}76543210
Bl B2

Fig. 5C-23. Unsigned bit string

5C.4.2 Signed Integers Stored as Bit Strings

Fig. 5C-24 shows an example signed bit string extending from bit b5 of B1 to bit b2 of B2 (6 bits
total). The sign bit is bit 5 of B1. If the sign bit is “0” the value is positive, if “1”, the value is
negative, and it is represented in two’s complement notation.

In B1, bits b6 to b8 represent 2*, 2°, and 27, respectively.
In B2, bits bl and b2 represent 2! and 2°, respectively.

data_type = SignedBitString

sign
value
bl b8 bl b8
76543210|76543210
B1 B2

Fig. 5C-24. Signed bit string

PDS Standards Reference 1.18.0 2022-03-31 53

6 Nami

ng

6A Character Sets

PDS recognizes several character sets.

6A.1 ASCII Character Set (also known as IsBasiclLatin)

The ASCII character set is the encoding of characters into 7-bit integer numbers according to the
ANSI standard (see Section 1.5):

000
010
020
030
040
050
060
070
100
110
120
130
140
150
160

NUL
BS
DLE
CAN
SP

X mMom ® oo O

oy

170 x

00
08
10
18
20
28

NUL
BS

DLE
CAN

SP

001 SOH
011 HT
021 DC1
031 EM
041 !
051)
061
071

=T Vo B S

101
111

[

121

< 0

131
141

Q

151 1
161 g
171 y

01 SOH
09 HT
11 DC1
19 EM
21 !
29)

002
012
022
032
042
052
062
072
102
112
122
132
142
152
162
172

02
0A
12
1A
22
2A

Hexadecimal -

STX
NL
DC2

SUB

Octal - Character

003
013
023
033
043
053
063
073
103
113
123
133
143
153
163
173

03
0B
13
1B
23
2B

PDS Standards Reference 1.18.0 2022-03-31

ETX
VT

DC3
ESC

ETX
VT

DC3
ESC

004
014
024
034
044
054
064
074
104
114
124
134
144
154
164
174

Character

04
0cC
14
1C
24
2C

EOT
NP
DC4
FS

ISy

A

+ = o ~— 43 B o

EOT
NP
DC4

FS

005
015
025
035
045
055
065
075
105
115
125
135
145
155
165
175

05
0D
15
1D
25
2D

ENQ
CR
NAK
GS

o

a X o

ENQ
CR
NAK
GS

o\°

006 ACK
016 SO
026 SYN
036 RS
046 &
056

066 6
076

\Y%

106
116

< =2 0=

126
136 *
146 £
156 n
166 v
176 ~

06 ACK
OE SO
16 SYN
1E RS
26 &
2E

007
117
027
037
047
057
067
077
107
117
127

BEL
SI
ETB
us

~J

)

= O @

137

147
157
167
177

Q

DEL

07 BEL

OF SI

17 ETB

1F US

27 !
2F /

54

30
38
40
48
50

X mom ® oo O

58
60
68
70 p
78 x

oy

16
24
32
40
48
56
64
72
80
88
96
104
112
120

NUL
BS
DLE
CAN
SP

X mom ® o O

p

X

Decimal - Character

31 1 32 2 33
39 9 3A : 3B
41 A 42 B 43
49 T 4A J 4B
51 Q 52 R 53
59 Y 5A Z 5B
61 a 62 b 63
69 1 6A 3 6B
71 g 72 r 73
79 vy TA z 7B
1 SOH 2 STX 3

9 HT 10 NL 11
17 DC1 18 DC2 19
25 EM 26 SUB 27
33 ! 34 " 35
41) 42 * 43
49 1 50 2 51
57 9 58 : 59
65 A 66 B 67
73 I 74 J 75
81 Q 82 R 83
89 Y 90 Z 91
97 a 98 b 99
105 1 106 3 107
113 ¢ 114 r 115
121 y 122 z 123

ETX
VT

DC3
ESC

n X 0O w

—

34
3C
44
4C
54
5C
64
6C
74
7C

4 EOT

12
20
28
36
44
52
60
68
76
84
92
100
108
116
124

isy

A

+ = o ~— 4Jd = o»

NP
DC4
FS

+ B Qo - 23 B g A S

where the following are non-printing, control characters:

NUL
SOH
STX
ETX

EOT

null character
start of header
start of text
end of text

end of transmission

PDS Standards Reference 1.18.0 2022-03-31

35
3D
45
4D
55
5D
65
6D
75
7D

13
21
29
37
45
53
61
69
77
85
93
101
109
117
125

c X o

ENQ
CR
NAK
GS

o

36
3E
46
4EF
56
5E
66
6E
76
TE

14
22
30
38
46
54
62
70
78
86
94
102
110
118
126

< Z m VvV oo

ACK
SO
SYN
RS

37
3F
47
4F
57

= O @

5F

67
6F
77
TF

15
23
31
39
47
55
63
71
79
87
95
103

«Q

DEL

BEL
SI
ETB
us

=S5 O @]

Q

111 o

119
127

DEL

55

ENQ = enquiry

ACK = acknowledgement

BEL = bell

BS = backspace

HT = horizontal tab
LF = line feed

VT = vertical tab

FF = form feed

CR = carriage return
SO = shift out

SI = shift in

DLE = data link escape

DCl = device 1 control
DC2 = device 2 control
DC3 = device 3 control
DC4 = device 4 control

NAK = negative acknowledgement
SYN = synchronous idle

ETB = end transmission block
CAN = cancel

EM = end of medium

SUB = substitute

ESC = escape

FS = file separator
GS = group separator
RS = record separator
US = unit separator

DEL = delete

6A.2 ASCII Alphanumeric Character Set

The ASCII alphanumeric character set includes the upper and lower case ASCII letters and the
ASCII digits.

upper case letters A-Z ASCII 0x41 to Ox5a
lower case letters a-z ASCII 0x61 to Ox7a
digits 0-9 ASCII 0x30 to 0x39

PDS Standards Reference 1.18.0 2022-03-31

6A.3 ASCII Printable Character Set

The ASCII printable character set is the set in Section 6A.1 less the non-printing, control
characters. The hexadecimal equivalents are 0x20 to Ox7E, inclusive.

6A.4 UTF-8

UTEF-8 is a variable-width encoding scheme that represents the Unicode character set; it was
constrained by RFC 3629 to four bytes in November 2003. UTF-8 is backwardly compatible
with the ASCII character set while its 2-, 3-, and 4-byte options permit encoding of virtually any
character used worldwide. For more information, see the following:

RFC 3629 http://www.tools.ietf.org/html/rfc3629
UTEF-8 http://en.wikipedia.org/wiki/UTF-8

Unicode http://www.unicode.org/versions/Unicode6.2.0/

6B Namespace

A namespace is a context within which attributes and classes may be defined; it is managed by a
steward. A namespace may have only one steward, but a steward is allowed to mana<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>